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ABSTRACT

New methods are outlined for dealing with the vibration responses
of complex flight vehicle structures to loeal and to diffuse acoustic
excltation, Energy absorption at structural joints and acoustic radi-
ation resistance are shown to be important in establishing levels of
these responues. Some experimental results pertalning to energy ab-
sorption coefflclents and radiation resistance are given, and proce-
dures for estimating the latter are discussed,

Feasiblility studies of vibratlon absorhers utilizing viscoelastic
spring elements and dilstributed mass systems and of vibratlon 1solators
composed of visccelastic leaf springs are summnarized. Only the latter
are found to possess some practical advantages over conventlonal sys-
tems,

The results of experiments are presented which demonstrate
that sound-to-structure coupling may be reduced significantly by the
use of beams of special design (See page 28) whose stiffness de-
creases with increasing frequency. An analytical investigatlion is
summarized which shows that generally damplng of only the plates
of beam-plate systems may be more desirable than damping of only
the heams,

Reaults of exploratory studies are presented dealing with the
mechanisms responsible for the damping of alrcraft structural joints,
and analytical investigations of the relation between structural joint
absorption coefficients and loss factors are summarized. Ioss factor
data pertaining to two actual aircraft substructures are appended,
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INTRODUCTION

The increasling abundance of Intense sources of broadband vibra-
tion assoctated with present and future air/space vehicles tends to
make control of structural vibratory responses essential 1f struc-
tural fatigue faiiures and equipment malfunctions are to be kept
within reasonable limits.

The desipgn englneer has available analytical methods and tech-
nologlcal develepiments that permit him to desipgn simnle structures
to withstand simple (narrow-band) excitation. However no methods
appear available at present that permit him to deal similarly with
complicated structures subject to more complex exciltation,

The work summarized in thls report was undertaken as a step
toward providing the lacking design information. Part T of this
report outiines studies directed at identifying the parameters that
affect the responses of complicated structures most directly: Sec-
tion TA deals with systems excited at a point. Section IB with sys-
tems excited by a diffuse acoustic fileid, Part II deals with more
specific vibration control techniques. Scections ITA and IIC describe
feaslibllity studles of viscoelastic leaf spring isolators and non-
¢lassical vibration absorbers. Section TIB demcnsorates the reduc-
tion of sound to structure coupling attairable with beams deslgned
to have decreasing flexural rigldity with increasing lrequency.*
Results of an analytical study related to optimum placement of
damping treatments are discussed in Section ITD and results of
experiments aimed at revealing the sallent features of the damping
Inherent in aircraft structural joints are presented in Section TIE,
The final sectlon IIF summarizes initial analytical results per-
taining to the relation between structural loss factors and absorp-
tion coefficients. Appendix I constitutes a detalled dlscussion of
modal densities: Appendix IT1 summarizes loss factors measured on
two substructures of an actual aireraft,

*These beams are the subject of patent appllicatlons belng flled in the
United States and other countries by Bolt. Beranek and Newman. Inc.

Manuscript released by the authors 30 March 1962
for publlcation as an ASD Technical Documentary Report.
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SECTION I
PARAMETERS AFFECTING RESPONSES OF COMPLICATED STRUCTURES

If one attempts to solve in detall the varlous coupled equa-
tions of motion that describe the dynamlic behavlor of a structure
one encounters intractable mathematics for all but the simplest
structures., One may therefore wish to sacrifice detall foi* tract-
abllity and search for a method that will permlt one to describe
in simple terms the average vibration of a complex structure, so
that the salient parameters cf the structural response may be
understood and controlled in design.

A, Point-Exclted Structures; Room Acocustics Analogy

In describing the acoustics of a room one faces many of the
problems that one encounters also 1n determining the vibrauv.ons
of complicated elastic structures. In room acoustics one cannot
solve the wave equation in detall because of the complexities of
geometry and of the interactlions between the waves and the rcom
boundaries. Instead, one recognlzes the diffuse character of the
sound fleld and may then calculate some of 1ts average character-
istics, based on some average properties of the room and its
boundariles.

Simllarly, detailed solutions of the equatlions of motion of
structural systems get out of hand very rapidly as the complexity
of these systems increases. Therefore one is led to emulate room
acoustica, postulate a diffuse wave field in the structure to be
studied, and attempt to calculate mean properties of the vibration
from relatively rough descriptions of the structure and its boun-
daries.

The work reported in this sectlion attempts to set down the
reasoning as applied to complex structures (composed of beam and
plate-like sub-structures), to delineate the important parameters,
and to describe some experimental results that validate the theo-
retically develcoped relations.

1., Baslc Concepts

The energy E with which a structure of total mass M Qibrates
may be expressed as

A—

E =Mve (A.1)

in terms of the mean square veloclty v2 of the structure, 1f it is

assumed that this energy is uniformly distributed.

ASD TDR 62-237 2



If there are mechanlsms that remove energy from the structure
(as there always are in practical systems} then one must supply
energy to the structure in order to maintain a glven level of vi-
bration. When the power supply 1s "turned off", the energy in the
structure g%y be expected to decay., If this decay 1s assumed to
vary as e “%, where t denotes time, then the power loss 1is
-dE/dt=6E. In the steady state the power input P must equal the
power loss, so that one may write

P =5 My = %—8 M (A.2)

The reverberation time T=13.8/6 introduced here is a quantity that
lends 1tself well to experimentel determination; it is defined
(ref. 1) as ghe time required for the energy to decrease by a
factor of 10%,

At frequency r the power loss in the interior of the struc-
ture may be described (ref, 2) in terms of the structural loss
factor n, as P, ,=2rfnE. Losses at the boundaries of the struc-
ture, on the o%ﬂgr hand, may be more conveniently treated in terms
of the concept of absorption coefficients. The absorption coeffi-
cient of a boundary 18 defined as the ratic of absorbed power to
incident power at that boundary. If a system of wavea moving
along & structure encounters a boundary, some energy 1s absorbed,
the rest is reflected and propagated until 1t meets another boun-
dary, etc. The energy absorbed at one encounter with the boundary
is vE, where v denotes the absorption coefficlent as defined pre-
viously. The number of boundary encounters per unit time may be
expressed as c¢_/L , where c¢_ denotes the group velocity of the
waves on the s¥rullture* (th€ velocity at which energy propagates)
and L the mean free path (the mean distance travelled by the wave
trainbetween boundary encounters), The mean power loss per unit
time at the boundaries thus 1s Py ar =yEc /Ih’ where v denctes the
mean absorption coefficient. y g

If the boundary is not uniform, <y may be obtalned from

YL = v, L (A.3)

1
where v, is the absorption coefficient of the izﬂ plece of boun-
dary (wﬁich has length Li)’ and where L=Z L, denotes the total
boundary circumference. “By combining the rélations for internal
and boundary power losses one may obtain

*For a plate of flexural rigidity D and surface density u,

cg=2 -\ﬁ;f‘ uﬁ/D/p, .

ASD TDR 62-237 3



P = BE = [2nfq + ycg/Im]E (A.4)

Kosten (ref. 3) has shown that for two-dimensional systems the mean
free path Im;vS/L, where S 18 the total surface area, Hence the
foregoing result may be written as

- C
5 = i%?g =ontn + B2y L, (A.5)

which is closely related to a result given by Cremer (ref, 4),
Eqs. (A.2) and (A.5) contain the salient resultg of the foregoing
discussion. Eq. (A.2) permits calculation of ¥ from input power,
mass M, and reverberation time T (or decay constant 6), and Eq.
(A.5) expresses T or 6 in terms of internal losses (described by n)

and boundary absorption coefficients v.
The assumptions underlying the foregoing derivations are:

1. Energy uniformly distributed over structure (wave field
diffuse; wavelength much smaller than mean free path).

2., Exponential decay of energy with time.

3. Group veloclity (not phase velocity) and Kosten's mean
free path relation apply.

4, Boundary absorption contributions add linearly (Eq. A.3).
The general validity of these assumptions 1is by no means
self-evident, The results of some experiments, undertaken to

verify applicability of these assumptions, are discussed in the
following section.

2, Experimental Verification

1) The validity of Eq. (A.2) and of the underlying assumption
of uniform energy distribution was verified by measuring the input
impedance of a point-driven plate and comparing the measured values
to those predicted from relations involving Eq. (A.2) and separately
measured reverberstion times, Good agreement was obtained over the
entire test frequency range.

2) Exponential decay of energy was verified for a number of
beam and plate combinations (excited by impacts) by means of a
grephic level recorder. This recorder essentially plots log E vs
time, 80 that a straight line record corresponds to exponential
decay. Virtually atralght lines were obtained 1n all experiments
of this type.

ASD TDR 62-237 4



3) Applicability of group veloclty and of Kosten's mean free
path expression was verified by means of an experiment which pro-
vided a boundary portion of unlity absorption coefilcient; i.e., a
means for permitting all incildent energy to leave the structure
under conslderation. A plate was used in these cexperiments as the
primary structure, a second highly damped plate attached to the
first over a portion of one of 1ts edges served to provide a boun-
dary with unity absorption. This "known" absorption coefficlent
was compared with values obtalned experimentally and computed {rom

. (4.6)

In this relation, which may be obtained from Eq. (A.5), T. denotes
the reverberation time obtalned with vy4=0 (1.e., before aading ab-
sorving structures at the 1tH portion of the boundary), and Ty
denotes the reverberation time observed after addition of the
absorber extending over L,. Equation (A.6) 1s, in fact, useful
for the practical evaluation of absorption coefficlents in general.

Agaln, good agreement between measured v, and the predicted
value of unify was observed, within the limitétions of the experi-
ment.

4) The linear additive property of absorption coefficients
indicated in Eq. (A.3) was verified by a number of experiments
involving plates with boundary absorption provided by various
lengths of damping tape and screwed-on beams, varliously oriented.
The additive property was found to hold for all configurations
tested.

3. Resulis
a) Limits of Validity

The proposed equations should not be applied blindly to all
situations, One may readily visualize, for example, that absorb-
ing devices placed near nodal positions of & structure will have
little effect on the motions of the structure, whereas the absorb-
tlon of devices located near antl-nodal positions may be greatly
enhanced.

In addition, absorbing structures that are small compared to
a flexural wavelength on the primary structure may have thelr
absorption decreased because they can not interact effedtively
with the wave, and/or they may have thelr absorption increased
somewhat due to effects analogous to acoustic diffraction (refs,

5:,6).
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b) Absorption Coefficlents*
i) Summary of Experimental Results

Figures 1 and 2 summarlze the results of absorption coeffi-
cient measurements on aluminum plates of 1/16 and 1/32 inch
thlckness, respectively. The various absorbers that were used
are also shown schematlcally in these filgures.

In analogy to room acoustics one may assign structural
absorbers to three categoriles:

1) High frequency absorbers, whose absorption coefficient
increases with frequency, e.g., damplng tapes.

2) Mid-frequency absorbers, whose absorption peak occurs
somewhere in the mid-frequency range (say, between 300 and 8000
cps) and is governed by a resonance phenomenon, e.g., bolted-on
beams,

3) Iow frequency absorbers, whose absorption is highest at
low frequencies and decreases to very small values at high fre-
quencles, e.g., parallel beams with dissipative material on the
plate between them,

11) Absorption Mechanisms

The previously summarized experiments were undertaken pri-
marily to demonstrate the absorption coefficient concepts. The
mechanisms that contribute to energy absorption need further
exploration, but some conclusions may be deduced from data that
are avallable so far., These conclusions are as follows:

Damping tapes - The dlasslpative action of these tapes 1s
fairly well understood (ref. 2), although additional work is
required to interpret available analyses in terms of the desired
absorption coefficlents., Theory predicts that the damping action
of a tape 18, as a first approximation, proportional to the ratio
of tape foll thickness to plate thickness. Absorption coefficlents
measured with the same tape on plates of 1/16 and 1/32 inch thick-
ness were found tc¢ be in the ratlc 1:2 over essentlally the entire
frequency range; in good agreement with the theoretical prediction.

Beams bolted to plate, with viscous interlayer. - Energy
losses here are undoubtedly due to deformatlion of the interlayer
and thus are assoclated with relative motion between the beam and
plate. Absorption peaks may be expected at maxima of this rela-
tive motion, 1.e., at resonance of the plate portions between
Berews (since the beam probably deforms and moves much less than
the plate).

*Some additional detalls may be found in Reference 7.
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It is evident from Flg. 1 that doubling of the distance
between screws shifts the first absorption peak by a factor
of 4 in frequency, as one would predict on the basis of the
aforementloned resonances, The measured values of the fivrst
few peak frequencles also agree surprilsingly well with values
computed as 1f- the plate portions between bolts were simply
supported at the bolts., As has been remarked, this type of
calculatlon assumes that the beam acts essentially like an
infinitely rigid and massive support for the plate segments,
The good agreement observed may be ascribed to the fact that
the beams used are very stiff and heavy as compared to the
plate; worse agreement should be expected for lighter or
softer beams, which may make greater coentributions to the
relative motion.

Parallel beams, with dissipative material between them - For
systems of this type, shown schematically 1n Figs. 1 and 2, peak
absorption may be expected to occur at a resonance frequency deter-
mined by the masses of the beams and the spring action of the plate
between them. The dissipative mechanism here is provided by defor-
mation of the damping compound (Aquaplas). Frequencles of maximum
absorption calculated on this basis agree well with the observed
values,

One may observe that at high frequencies the glued-on
beams resulted in low absorption (Fig. 1), whereas the bolted-
on beams produced fairly high absorption (Fig. 2). This may
be due to the glued-on beams' reflecting most of the incldent
bending wave energy, which thus can not be dissipated by the
damping materlal between the beams. On the other hand, flex-
ural waves which are much shorter than the distance between
bolts pass the bolted-on beam virtually unattenuated (ref. 8)
and can therefore dissipate much of their energy in the damping
material.

Riveted Beams - Measurements indicated in Fig. 2 were performed
on a panel made to approximate aircraft construction., This panel
is shown in Fig. 3. Absorption here was prc¢bably due to friction
between the beams and the plates. The low absorption coefficients
observed might be due to the close rivet spacing, which restricts
the relative motions of beams and plate. See also Section II-E of
this report.
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B. Structures Excited By Reverberant Acoustic Fields;
Application of Energy Concepts

Thermodynamic or energy concepts are generally useful for
arriving at some understanding of complex systems, since these
concepts do not rely on detailed analyses of the systems involved,
These concepts, properly interpreted, might therefore be used to
advantage in analyzing the vibrations of complex structures ex-~
posed to random acoustlc filelds.

The average energy associated with a given mode of a struc-
ture or of a reverberant room may, in analogy to gas dynamles, be
taken as a measure of the "acoustic temperalure" of the ciructure
or room in a small frequency interval encloslng the modal frequency.
One may then conceive of a reverberant room as a thermal bath 1n
which the structure is immersed and with which 1t will eventually
come to thermal equillibrium., The equilibrlium temperature of the
structure then depends on the temperature of the room and on how
good the thermal contact between the two is, This thermal analogy
has been useful in guiding the analyses presented subsequently,
but further elaboration on it will be omitted here since it is not
essential for summary and application of the results of these
studies and since it 1s available in detail in referernce 3.

l. Baslic Concepts

a) Modal Behavior

Whenever structural resonances occur in separate sharply
defined frequency reglons; i.e., whenever the effective struc-
tural damping is very small (or the quality factor Q is very
high), the various structural modes may be consldered as inco-
herent harmonic oacillators., That 1s, each mode has assoclated
with it 1its own modal veloclity energy, mass, force, etc.

In complete analogy to relations developed for a single-
degree-of«freedom system subject to rang%m excitation, one may

express the mean square modal veloclty v< as
— S.(w_ )
2 T f'o
ve =3 W R, {B.1)

where S.(w)} denotes the power spectral density of the modal force
f, o tﬁe natural frequency assoclated with the mode, R,, the total
resiBtance (analogous to the usual viscous damping coef?icient),
and M the modal mass (refs, 10-12).
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FPor structures lmmersed in acoustic media it 1s convenlent
to consider the total resistance as the sum of two terms: one
to account for energy radiated to the medium, and the
ﬁ@g to account for other energy loases, such as those
due to m&%gr 1al hysteresis or "mechanical" damping.

From the work of Smith (ref. 10) one may show that for a
structure exposed to a reverberant acoustic fleld with power
spectral density of pressure S (w), theé previously defined Sf
is glven by

4o ¢
Pa %
Here p_ denotes the denslity of the acoustic medium, cy the speed

of souﬁd in 1it.

By combining Egqs. (B.1) and (B.2) one may obtain the follow-
ing cogent expression:

8 = 6 + 1t (B.3)
where
GS =M v2 = average energy per structural
mode (B.4
Y
6, = S (w) = average energy per acoustic
R Py @ p mode* (B.5)

*The total acoustic energy in a reverberant room of volume V in
& frequency interval Aw, within which the mean square pressure 1is

De=sp(w°)'Aw, 1s given by
2 2
Ep = pev/baca

and the number of modes in the room in this frequency interval
is (ref. 5)

N 2V'Aw/212 03 .

R = %

Hence 6p = ER/'NR is given in Eq. (B.5).
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R
" =-ﬁ——f5%d = a factor that denotes the degree  (B.6)
rad’  mech of coupling between room and

atructural mode.

Thus, if the various terms that enter Eq. {B.3) are in hand one
may utillze this equation to estimate the response of structures to
reverberant excltation under the conditions where the assumptions
underlying the derivation of Eq. (B.3) are reasonably well satisfied.
The remainder of this section will therefore be concerned primarily
with evaluation of the varlous parameters.

b) Parameter Estimates
1) Modal Mass

The modal mass M is defined so that M‘;?72 glves the average
kinetic erergy of the structure. The modal mass is between 1/2 and
1 times the total mass, 1t is nearer 1/2 of the total mass for higher
modes.

i1) Coupling Factor p

It 1s evident from Eq. (B.6) that for those cases where mechan-

ical damping HTec is much smaller than radiation damping R, ., Ww=l.
For most pract ca? cages, however, Rrad<<Rmech’ and

R
rad

Bo= (B.T7)
Rmech

Equation (B.3) applies when an acoustic field excites the structure.
For the case where the structure excites the acoustic fiecld one finds
from a relatively detailed examination of the interaction at 6.,=9 . u!
with p'=y, RS

ii1) Mechanical Resistance Roech

As for a_ﬁimple harmonic oscillator, the average power loss for
a mode 1s P=Rqve< and the average energy 1s E=Mv<, By equating P/E
obtained here”"to the same ratio computed from Eq. (A.4) and noting
that generally Rpecn”>Rpag One may express the mechanical resistance
directly in terms o? the previously introduced structural loss factor
7 and absorption coefficient v:

Le
Riecn = M [Qﬁhq + "1?55 Y ] : (B.8)
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If boundary losses predominate over internal losses, as often 1s the
case, then

c
~ B M .
Riyeen T S YLy (B.9)

where Ys; 1s the absorption coefficlent of a portion of the boundary
of leng%h Ly and M/S~pg/2 (1.e., M/S is approximately equal to one
half the structural mass per unit surface area).

iv) Radiation Resistance R 4

The colncidence phenomenon is known to be a major factor in
determining the radiation resistance of simple structures. At
frequencies below the coincidence frequency the length of a flex-
ural wave in a structure is greater than the acoustic wavelength in
the surrounding medium, and the coupling between the structure and
the medium is poor; Rg g is small. At frequencies above colncldence
the flexural waveleng ﬁs are smaller than the acoustic wavelengths,
coupling 1s better, and Rrad 1s greater.

For uniform beams or plates the coilncidence frequency f, 1is
given by

e
anf, = w, = ca/xccL s (B.10)

where x denctes the radius of gyration of the cross-gection

(k = hAf12 for plates of thickness h), ¢_, denotes the speed of
sound waves in the acoustic medium, and & the gpeed of longitud-
inal waves in the structural material. Stiffer structural members
thus have lower colncldence frequencies and might be expected to
exhibit higher average radiation resistances in a given wide fre-
quency band. ¥

In a structure composed of many beams and panels (e.g., a
typlcal alrcraft section) one may generally expect to find that
some components of the structure are below and others above colin-
cldence at a given freguency. 1In order to obtain a first spprox-
imation to the radliation resistance of such a composlite structure
cne might neglect interaction effects and assume that only those
components which are above coincldence contribute significantly to
the radiation resistance. Radiatlon reslstance estimatlon proce-
dures based on these agssumptlons are outlined below.

Since the beams in most practical beam-plate structures are
much stiffer than the plates, the beams should dominate the radia-
tion resistance of such structures at the lower frequencies. The
pancls, by virtue of thelr higher coincidence frequenciles, may have
little effect except at the highest frequenciles.
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The acoustic radiation of beam-plate systems in which the plates
are limp (i.e., soft and damped) may thus be assumed to be primarily
due to the beams acting as strip radiators, with the panels acting
essentlally as baffles, but perhaps adding a little to the width of
the strip radiaters - in analogy to a similar situation encountered
in studies of sound transmission through walls with studs (ref. 13).

The radiation resistance of a strip radiator of length L and
width w is (for both faces) given by (ref. 1h)

R = wweLpa ; for > w, (B.11)

strip

provided that the strip width w is small compared to the acoustic
wavelength, Below coincidence (that is, for w<w_ ) the radiation
resistance of a strip is much smaller than that given above,

Heckl (ref. 15) has suggested that a strip radiator attached to
a limp plates has an effectlve radiating width waA,/7, where A  1s
the wavelength of plate flexural waves. For homogéneous plateg,

hp = 27 mcl/m (B.12)
so that for a beam attached to limp panels,
Rgtrip hLp xey (B.13)

where K and Cr, refer to plate radius of gyraticon and longltudinal:
wave velocity.

One may note that Rp decreases with Increasing frequency and
that Rgtpip 15 independent of frequency. However, the effective
strip widtg assoclated with a practical beam probably will not be
less than the width of the beam flange in contact with the plate.
If this flange width 1is denoted by w,, then Ap/%=wo at a frequency
fr glven by

2KCL
£,=—2 . (B.14)

L =

TI"'Wo

For f>fr the radiation resistance of the strip should obey

~ s
Rstrip = Wlpyvw, » DI, (B.15)

instead of Eq. (B.13).
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For a beam-plate structure In which the plates are below
colncidence the radiation resistance at frequency f may then be
approximated by

R_,4(f) = dp xe, Y, Ly <rer, * 2wfp, 2 (WOL) r.>7, (B.16)

where the first summatlion denotes the total length of beams that at
frequency f are above coincidence but below fr’ and the second sum-
mation 1s taken over all beams for which f>fr.

On the other hand, at frequencles which are above the colncldence
frequency of the panels, one may expect the radiation to be dominated
by that due to the panel. Then, 1f one neglects edge effects (ref. 1)
and takes into account radiation from both faces, where A is the total

area of the panels (one face) that are above coincidence,

Raag = 2BP,Cy - (B.17)

It must be pointed out that ln computing radiatqdzpouer from the
defining relation P=R vS one must always use that v< which refers

to the velocity of the radiating section. Since it is the panel that
radiates, its velocity must be used in the foregolng expression.
(When the panel 1s "1imp" the velocity of that portion of it that is
radiation 1s essentlially that of the beam. Validity of the panel
veloclty under this condition has been demonstrated experimentally,
as discussed in the next section.)

A relation between panel velocity v, and beam velocity v, may be

deduced for the condition of modal independence from the assumption
that the average energy per mode is the same for all structural com-
ponents, Then the energy contributed by a component is proportional
to 1ts modal density, and if the beams and the plate are of the same
material,

—5

V. 3
Mb b p (
- ’ B.18)
Fg ;? £y
P
where denotes the total panel mass, Mb the total beam mass, and «

denotes the plate radius of gyration, Ky the beam radius of gyration.
(This equation assumes the grillage composed of the beams to behave
like an equivalent plate (ref. 16). The stiffest beams will influence
this behavior most, therefore thelr x_ values should be used in this

approximate computation.) If beams and plates are of different mate-
rials, the right-hand side of Eq. (B.18) should be multiplied by

ch/cLb.
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It should be remembered that the foregoing vrocedure for estimat-
ing radiation resistance constitutes only of a first step, and as such
may be unreliable. Pertinent results of a later study (ref. 17) are
discussed under the heading of Conclusions at the end of thias section
(page 22}.

¢) Non-Modal Behavior
1) Limit of Modal Behavior

The entire previous discussion is based on the assumption that
the structural modes do not overlap 1in freguency, 8o that thelr vibra-
tions are statistically independent and their energles do not interact.
Overlap occurs if the frequency bandwidth associated with a mode 1s of
the same order of magnitude as the average frequency separation between
modes.,

As shown in Appendix I, the plate-like portions of beam-plate sys-
tems contribute many more modes than the beam-llke portions, so that
the former predominate in establishing the separation between modes.
The average frequency separation Af between modes of a panel of area A
and thickness h is given by

N th/A\/S" , (B.19)

where ¢, denotes the longitudinal wave velocity in the panel material,

The same expression applies also for the higher frequencles of a heam-
plate system in which all panels are of the same thickness and material;
A then denctes the tctal panel area.

If one assumes for the sake of simplicity that the location of
structural modes along a frequency axis may be described by a Poisson
process (ref. 18), one may show that the probability of finding more
than one mode in a frequency interval Ab is 0.5 or greater if
Ab/Af>1.68. One may then define a "frequency of modal overlasp" f, for
a structure as that frequency for which the modal bandwidth equals
1.68 Af. Since bandwidth i1s related to quality factor Q or loss factor
1 as 8b=f/Q=nf, the frequency of modal overlap is given by

f_ = 1.6800f = 1,68 %‘l (B.20)

At frequencies above this frequency the probability of finding more
than one modal peak within bandwidth Ab of a modal response is greater
than 0.5. Thus, modal behavicr of the structure may reasonably be
assumed at frequencies below b
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11) Estimation of Non-Modal Response

At frequencies above f_ a beam-plate structure may be expected to
respond to an acoustlec f1e1d essentially like an infinlte plate, and
to obey the "mass law" relation

Sy(w) = 48, (w)/p5 (B.21)

where S. 18 the power spectral density of acceleration of the structure,
Pg is 1%3 mean mass per unit surface area.

2. Experimental Results

A serles of experiments was undertaken in order to obtain an in-
dication of the validity of the previcusly outlined theories. These
experiments were performed primarily on a simulated aircraft panel
(shown in Fig. 3) suspended in a large test room. In each case the ex-
reriments were performed with the panel in its original condition and
also with some damping (several randomly oriented strips of MMM damping
tage) added. All experiments were performed with narrow bhand nolse ex-
cltation.

Figure 4 summarizes results obtained from experiments consisting
of driving the panel at various points by meang of a mechanical shaker
and measuring the power P radiated to the rooim as well as the ve-
locity of one point on thEESanel. (A point on a rib was selected since
it was found that the transducer distorted the behavior of the panel at
higher frequency when attached to the panel itself.,) The measured gquan-
titles are interpreted in the figure in ¢ 8 of radiation resistance

Rrad according to the relation Prad“Rra&/v . The subscript b here in-

dicates that velocity was measured on a beam, rather than on a panel,
as previously indlcated.

The results cof reverberation time measurements on the panel of
Flg. 3 are sumarized in Fig. 5, interpreted in terms of total resist-

ance RT=Rmech+Rrad according to 13.8M/T with the modal mass M taken as

1/2 the total mass.

The upper series of points shown in Fig. 6 represent values of the
coupling factor W' computed according to Eq., (B.6) from the data of
Figs. 4 and 5. These points pertain to the case where the panel is
driven mechanically and excites acoustic oscillations in the test room.
The iower serles of points shown in Fig. & represents values of the
coupling faztor U obtalned from additional measurements in which sound
in the room excited vibrations in the panel. The latter results were
computed on the basis of modal energies, using Eqs. (B.3) and (B.5).
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All computations for Fig. 6 were based on the assumption that Vy,s a8
measured at point & shown in Fig. 3, represents the velocity of the
simulated aireraft panel. Theory indicates that u and u' of Flg. 6
should be equal, and 1t appears that panel veloclity v, lnstead of
beam veloclty Vy should be used 1n the varlous computgtions. The ra-

diation resi ce R b) referred to a beam 18 related to that referred

tan '\
to a plate RSEZ acco%g?ng to

_ g(p) .2 (p) 2
P=R.,3a vy = Rug v, (B.22)

Therefore the p' data of Fig. 6 appears to be too high by a factor of
;S}vg and the L data appear to be too low oy the same factor. Hence

this factor may be computed by comparison of the two sets of data. The
results of such a computation are shown in Fig., 7, together with the
value estimated from Eq. (B.18) which is based on the assumption of
equipartition of energy among all structural modes,

(b) (p)
Figure 8 shows the data of Fig. 4 corrected from Ro.g to Rno3 by

use of the velocity ratio plotted in Fig, 7. Alsc shown in Fig. 8 are
the radiation resistance values predicted by Eq. {B.16).

3. Conclusions

From the foregoing experimental results, and from addition results
obtained under NASA sponsorship (ref. 17) subsequent to completion of
the work described here, one may arrive at the following conclusions:

1. Equipartition of energy among the structural modes is reason-
able and provides a useful estimate of the beam/plate ve-
loecity ratio,

2. The modal energy expressions of Egqs. (B.4) and (B.5) appear
to be valld, and the modal mass may reasonably be approxi-
mated by 1/2 the total mass.

3. Veloecity and radiation resistance should be referred to the
plate, not to ribs, in caleculation of coupling factor u.

4. Reeciprocity holds; 1.e., u' (room driving plate) = u (plate
driving room).

5. Radlation resistance values estimated from Eq. (B.16) always
exceed the actual values, occasionally by considerable
amounts,
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The deviations of experimentally determined from theoretically
predicted results apparent in Fig. 8, and more pronounced deviations
observed in a later study {(ref. 17) performed with a larger and thicker
baffled plate with more massive beams; have shed some doubt in the gen-
eral applicability of the strip radlator concept as cutlined here. A
later (so far only partially validated) theory (ref. 17) ascribes the
radliation resistance of beam-plate structures to the scattering of
plate flexural waves at beams, edges, or other discontinuilties. The
presence of beams, etc., thus is still held responsible for increas-
ing the radiation resistance of the composite structure, but beam co-
incidences now assume much less importance. The newer model predicts
radliation resistance inc¢reases due to beam colneidences to be notice-
able only with beams that are very light relative to the plate and to
occur at fregquencles which may be consideratly higher than the clagsi-
cal coincidence frequencies of the beams, However, since the strip
radlator theory proposed in the present report may be shown on the
basis of the newer theory always to result in high estimates of the
" radlation registance, the simpler strip radiator theory may still be
ugeful for conservative design estimates.
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SECTION II
SPECIFIC VIBRATION CONTROL TECHNIQUES

The maxlmum responses of structures to vibratory excltatlon are
affected primarily by the magnitude of the excitation, its coupling to
the structure, and by the resonant and damplng characteristics of the
structure, Controsl of vibration must thecefore be concerned with fa-
vorable adjustment of these factors.

The structural designer cannot usually hope to do much about con-
trolling the magnitudes of exciltation caused by aercdynamic or acoustic
phenomena. However, when the excitation 1s a local one, as for example
due to a vibrating machine (that cannot be modified itself), the de-
signer may turn to vibration absorbers to reduce the excitation that
reaches the structure. Attempts at devising vibration absorbers with
improved characteristics are summarized in the first of the following
gections.

Means for reducing the coupling between socurces of excitation and
structures are discussed 1n the next two sections. Section B cutlines
experimental results that demonstrate the utility of "velocity-controlled"
beams (whose stiffness decreases with increasing frequency) in reducing
the radiation resistance of beam-plate structures. Section C summa-
rizes results of a mathematical study of viscoelastic leaf spring isola-
tors, which may posseas some attractive features for reducing the cou-
pling between local sources and structures,

The final three sections deal with aspects of structural damping,
which is most important in limiting structural responses. Seciion D
outlines a theoretical study of the interaction of beams and plates in
beam-plate systems, in order to determine how application of damping
to one or the other of these components affects the system responses.
Sgeection E presents the results of a primarily experimental inveatligation
intended as a first ster toward understanding and improving the damping
of aircraft structural Joints. Finally, section F summarizes the deriva-
tions of some expressions that relate the loss-factors of beam-like
structures to absorption cocfficlents exhiblted by these st—uctures
attached to plates.

A, Non-classical Vibration Absorbers

It 1s well known that one may reduce the steady-state response of
a primary mass M tc sinusoldal excitation at frequency W, by connecting

M to a secondary mass m via a gpring of stiffness k, so that ws = k/m,
However, the secondary mass and spring can reduce (i.e¢., "absorb") the

vibration of the primary mass only for frequencies near Wy For example,
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for driving frequencies only slightly greater than w, the "absorber"
results in large amplification of the response of M.

1) Fregquency-Variable Springs

If the frequency of absorption W, sVk/m could be made to change
with driving frequency a 80 as to remaln equal or nearly equal to it,
the resulting device would act 1ike an ideal absorber over the entiie
range over which thls equality is maintained.

Continuous reduction of the secondary mass with increasing fre-
qucncy appears impossible to obtain practically. However, viscoelastic
aprings are known to incrcase 1n stiffness with increasing frequency.
Detalled consideration of the absorber action of vligcoelastic springs
and of representative sultable materials showed that:

1) The stiffnesses of viscoelastic materlials lncrease at
most as the first power of frequency, whereas lncrease
as the square 1s required for continuous optimum ab-
sorption.

2)  The most rapid increases of viscoelastic material stiff-
ness oc¢cur in conjunction with high damping, which de-
creases absorber effectiveness.

3) Large ratios of secondary to primary mass would be re-
guired for response reduction over a wide frequency
range., Large added masses are generally undesirable;
otherwise they could be connected rigidly to the primary
mass to reduce 1ts response without intrcduclng new
resonances.

These conclusions, coupled wilth practical conslderations such as the
temperature dependence of the properties of viscoelastic materials,
tend to rule out the desirabllity of vibration absorbers with visco-
elastic springs.

2) Distributed Secondary System

It was thought that an absorber using a distributed mechanical
system (such as a beam) instead of a rigid secondary mass m could be
useful for controlling the vibrations of the primary mass at a number
of frequencies. Detalled analyses of this idea showed that abscrption
could indeed be attalned at many frequencies, but that such absorbers
also result in resonances {and severe amplification of the responses)
at frequencles very near the absorption frequencles. Such systems
would therefore require very precise absorber design and accurate pre-
diction of the exeiting frequencies, and thus must be Jjudged to be im-
practical in genersl.
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B. Radlation Reslstance Contrcl in Beam Design¥

Beams may be designed so that thelr flexural rigidities de-
crease with increasing frequency. They thus have hlgher coincildence
frequencles than conventional beams with the same low-frequency (static)
stiffness and should therefore result in less coupling to an acoustic
fleld.

Two 44" x 24" test panels of 0,032" thick aluminum were construct-
ed for this purpose. Three 24" long aluminum beams with C shaped
cross-sections (0.065" thick 1.75" deep 1.0" flanges) were attached
to one of the panels by means of an epoxy adhesive parallel te the
24" panel dimension and uniformly spaced over the 44" length, Three
beams designed as indlicated in Reference 19 of approxlimately the same
statlec stiffness as the aluminum channels were similarly attached to
the second panel, The ccincidence frequency of the aluminum channels
was calculated to be about 200 cps that of the latter type beams
about 5 ke,

The results of measurements carried out on these two test panels
appear In Fig. 9. The latter beams were found to produce lower
values ol radiation resistance R, 4 and coupling facter 24 than the

more conventlonal channels, The near equality of the total resist-
ances Rtot of the two panels indicates that the mechanical reslstances

R n of the two were nearly equal and considerabhly greater than the
r@gﬁective radlation resistances,

C., Viscoelastic Vlibration Isolators

* o
1. Ieaf Springs

Viscoelastically damped beams may be designed according to
available methods (refs, 2 20) to satisfy a considerable range of
requirements and thus might provide superior broadband vibration
isolation characteristics. An explecratory study of viscoelastic leaf
springs was undertaken, therefore, as discussed in the following pages.

Consider a mass mounted symmetrleally on two identical leaf
springs, If a harmonic force of amplitude F acts on thls mass. then
a {rigid) support to which the springs are attached will also experience
a harmonlic force, but of amplitude F.,. Alternatively 1if the support
is made to osclillate harmonically wigh an displacement amplitude Yo+

then the supported mass will oscilllate with anr amplitude Y. The trans-
missibility of a mounting system (here the leafl springs) 1s defined as

*The experiments described here use beams which are the subject of pat-
ent application by Bolt Beranek and Newman, Inc,, and which bear

the trade-mark "Soundshear”, Properties and design of these

structures are described in Reference 19,
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F
T=‘i*9'=‘wz¥; ; (c.1)

the equivalence of the two ratlos may be deduced from reciproccity
(ref. 21).

The characteristics of beam-like structures depend on thelr bound-
ary conditions. For the present analyses the leaf springs were as-
sumed to be l1deally clamped at the support and at the mounted mass.

By solving the equation of flexural motions of elastic beams (refs. 4,
%1} subj?ct to the appropriate boundary conditions one finds that
ref. 22

- h(a)
T = &y + heele) (c.2)

where
h(a) = sinh ac + sin o

f{a) = cos a‘sinh a + sin u-cosh G (c.3)
c.3
g(a) = a(cos a cosh a - 1)

a = kL = 2r-L/A
wo= M/mL

Here L denotes the length of one beam, m its mass per unit length, and
M the supported mass per beam (or half the supported mass). Thus, i
denotes the ratic of supported mass to the masa of the supporting de-
vice. The symbol k denotes the wave number, A the wavelength associa-
ted with free flexural waves in the bcam:

4

kK = 2r/A = .,/m‘?/ﬁ : (c.4)

E denotes Young's modulus of the beam material, I the centroidal moment
of 1nertia of the beam cross-section.

One may take damping into account by letting E take on complex
values; that is, by replacing E by E* = E; + 1iE, = E,; (1 + 1) where

E, denotes the loss modulus, 1 the loss factor of the beam (refs. 2,
23). k and a also take on complex values k¥ and a¥®,

The general algebralc expressions tend to become intractable, but
fortunately the mass ratios p encountered in practical situations tend
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to fall intc two categories: 1) u << 1 (mass of leaf spring pre-
dominates) and 2) u >> 1 (supported mass predominates). For these
extreme situatlens one may arrive at some relatlvely simple approx-
imations.

For u »> 1 and small a (low frequencles) one finds that Eqgs.
EC62) and (C.3) rcduce to the classical transmissibility expression
refs. 22, 24) whose behavior is sketched in the insert of Flg. 10.
For large a and large u one obtalns the approximation

| sin a* + sinh a*
¢cos a¥ cosh a* - 1

a¥*|[pT = (c.5)

|cos a*| °

The second approximate equality applies for a*I not tco small, - a
condition which may be verifled to apply where wave ef'fects are im-
portant. If one introduces the parameters A and ¢, defined so that

A=lax| , ¢ = % arc tan n , a* = qa' - 1la" = pe~1® (c.6)

then one finds that transmissibility peaks (standing wave resonances)
occur where Re{cos a¥*! = cos a' cosh a" = 0, or for

a' = r{n + %) s n=1 2, °°° . (c.7)

A
The magnitudes T of the transmissibillty peaks are then given by
1"t . (c.8)

For most practical calculations one may determine the transmissibility
peaks from Eqs. (C.7) and (C.8). In addition A=a' unless the damping
is extremely high*, and practical calculations may be simplified fur-
ther,

u@ ~ (A sinh a")'1 = [a_ sinh (ao sin ¢)

The validity of the approximations of Egs. (C.7) and (C.8) may
be verified from ®ig. 10, in which the curves represent the results
of calculations carried out by means of a digital computer (ref. 25)
on the basis of the more exact expression Eq. (C.5) and the points
marked by crosses represent values calculated from the approximations
Egs. (C.7) and (C.8)

For p << 1 and o not too small one similarly may write
e
If(a*

This function exhibits peaks approximately where the real part of the
denominator vanishes, or tor

1

T = Isin a* + cos a* : (c.9)

1)
11

*For n € 2.0 one finds 1  a'/A { 1.04,
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at = w(n +3) n=0, 1, 2, *- (C.10)

A
The transmissibllity peak values T may be found by substituting the
foregoing values of a' into

A -3 -
T = (2 sin o' sinh a")™ " = [1/5 sinh(ao sin ¢)] 1, (c.11)
Figure 11 shows curves calculated from the more exact expression

Eq. (C.9) and peak value points obtained from the foregoing approx-
imations. Good agreement ls again evident.

2. Axial Springs
It is instructive to compare the results obtalned for leaf
springs with similar results for axial (e.g., compression) springs.

For the latter the general transmissibility expression may be written
as (refs. 22, 26)

T = |cos B - '8 sin Bl'l

B = wymi/K (c.12)

u! = M/mH

Il

where m denotes the mass per unit length, H the equilibrium length
of the spring, K the c¢lasslical spring constant, and u' the ratio of
supported mass to total spring mass,

Orie may again introduce damping effects by replacing K by an
appropriate complex guantity K¥ = Kl + 1K2 = Kl(1+1ﬂ)5 then B also
takes on complex values:

B* = B' - 15" __—_Be-i'y s B = !E*l s Y =%8.I'C tan n

(c.13)
One again finds that for large mass ratlio p' and low frequen-
cles (small B*) Egs. {C.12) reduce to the classical transmissibility

result (ref. 22)., For f* not too small and large u Eq. (C.12) may
be replaced by the approximate relation
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|g*utT = |sin px|7t (C.14)

which implies transmisslbllity peaks given by

A - -
w!'T = (B sinh ") 1. [B sinh (B sin v)] 1 (c.15)
where
B! = nw , n=15 2, °°* {C.16)

Simllarly, for small mass ratio u',

T =~ |cos px|-t (C.17)

A - -
T = |stnh "| ™! = [sinh (B sin y)]~*

and peaks occur where

Bt = w(n + %) s n=1, 2, e« (c.18)

The validity of these approximations muy be inferred from Figs,
12 and 13, in which the curves represent the results of the more
exact calculations and the points represent results obtalned by means
of the foregoing approximate expressions,

3. Comparison

It may be shown that if lcaf asprings and compression aprings are
to have the same ratio of supported mass to support mass and the same
classical fundamental natural frequency, then the previously defined
parameters A and B must be related as

A° = By12 . (c.19)

Figures 11 and 12 are scaled to conform to Figs, 9 and 10 on this
basis, so that one may compare leaf springs and common springs
equitably by comparing these sets of figures,

On the basis of these figures, or by means of mathematical
analysis of the pertinent relations, one may conclude that compared
to compression springs of equivalent mass and damping, leaf springs

1) result in fewer transmissibility peaks for a given
frequency range; but

2) tend to result in a generally higher level of trans-

missibility between peaks and in a higher envelope of
transmissiblility peaks.
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One should note, however, that the present state of the art
permits large amounts of damping to be designed into leaf springs
more readlly than into compression springs, and that viscoelastic-
ally damped leaf springs may thus constitute superilor broadbanad
vibration isolation devices.

D, Damping of Beam-Plate Systems

Sinee aircraft and other structures consist primarily of beams
and plates, the reductlion of the vibrations of such beam-plate ays-
tems has received considerable attention, The addition of damping
structures and materials usually results 1n weight increases, so that
it 15 desirable to apply such damping treatments as conservatlively as
possible and only where they wlll do the most good. The subsequently
outlined study was undertaken, therefore, as an attempt to define
under what conditlons damping of only the beams is preferable to damp-
ing of only the plates; and vice versa.

The system studied 1s sketched in Fig. 14, Although this sketch
shows a rectangular plate and the subsequent discussiocon deals 1n
Cartesian coordinates, these restrictions are not necessary; the
concluslons of the study should be more generally applicable. However,
i1t must be assumed that the boundary conditions of the beam are the
same as those of the plate at those plate edges which colncide with
the beam ends.

1l. Separable Eigenfunctions

Sinuscoidal free motlion of a plate at frequency o may be described
by w(x,y)elwt, where w(x,y) denotes the deflection shape and obeys the
classical equation (refs, 21, 27).

DVAW - uw2w =0 , (D.1)

where D denctes the flexural rigidity of the plate, u its mass per
unit area, For a given set of plate boundary conditions one may find
a doubly infinite set of solutions w = wmn(x,y) that, in conjunction
wlth o = @ satisfy Eq. (D.1) and the prescribed boundary conditions,
Forced motion of the plate may be described by the addition of a
term p(x,y) on the right-hand side of Eq. (D.1). The plate response
w(x,y) and forcing pressure distributions may be expressed in terms
of elgenfunction serles*

*¥All double summations extend over myn, = 1,2, «::, o,
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w(x,y) =Z"Z Wy (xy) . plxy) =Z Z P ¥ (x,y), (D.2)

whose coefflcients are related as (ref. 28)

2
W u %ﬁn(l +18) - o° | =P (D.3)

mn
if damping of the plate 1is also taken intc account by replacing the
real parameter D of Eq. (D.l) by the complex parameter D* = D{1 + 16);
6 denotes the loss factor of the plate.

A useful speclal case occcurs i1f the eigenfunctions ¥ can he
expressed as products of geparate functions of the two pl@%e coordl-
nates:

Von(xsy) = £.(x) g (y) . (D.4)

For the usual ideal boundary conditions (clamped, free, or supported)

the wmn are orthogonal; hence the factor functions are also ortho-
gonal, ‘and one may write

»
me form = m'

u/}}Jx) fm,(x) dx ={
L 0 for m ¥ m!

> = '
aFn for n n

g,(y) g, (y) dy =
a for n ¥ n!

where ¢m and ' are ccnstants, and the indicated integrations are
carried™out ovlr the plate edge lengths.

(D.5)

2. Beam-Plate Interaction; Excitation at Beam

The force distribution Q(y) acting between the beam and the
plate may be interpreted as a pressure distridbution p(x,y) =
Uy) A(x¥, where A denotes the Dirac delta functicn. The plate
deflection due to Q(y) may then be obtained by application of the
foregoing result. In partlicular., the plate deflection at the beam
(at x = 0), which is also the beam deflection and is denoted here
by z{y), is found to be given by

ra)

2a(y) =Y Zg,(v) , 7 =B (K -aA)) (D.6)

n
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where (analogously to ref. 29),

2 2
WO LLL BN - e
m - m n“+H

h=z1l- (w/&hn)2

and Q, is obtained from the expansion Q(y) = E: e, (y).
n

The beam deflection z, however, must satisfy the beam's equa-
tion of motion (refs. 21, 27)

4
B*g—ﬁ- - w?z = F(y) - Qly) (D.8)
¥y

where B* = B(1 + 1B) denotes the beam's {complex) flexural rigidity,
M its mass per unit length, and where F{y) denotes an externally
applied force distribution as shown in Fig. 14, If this external
force 18 alsoc expanded as F(y) = 23 F &, (y), one may obtain the fol-

lowing relation between modal force Fn and modal beam deflection Zn:

F K + 1A
o2 = Mpd (1418) - 0| + pL Z— (D.9)
n K-+ A
n n
Here w_ denotes the beam's nth natural frequency, which may be shown
to obe9
4
2 4B y 1 98y
wn—cnﬁ ’ Cn‘—--é;—z;ﬁ- » (D.10)

where C, is a constant [as a consequence of Eq. (D.4)]
In absence of damping (B =5 = 0), infinite amplitudes Z,, result
for finite driving force F_ (1.e., resonance occcurs) whenever'

Re{%n/zn} = 0 in Eq. (D.9). Damping of practically feasible magnitudes
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generally changes the resonance frequencies only slightly, so that
for all practical purposes one may still assume that the real part
of Eq., (D.9) vanishes at resonance. Then, in the presence of damp-
ing, at resonance

{D.11)

Of the terms on the right-hand side of Eg. (D.11) the first repre-
sents the damping effect of the beam, the second that of the plate.
From Eqs., (D,7) one finds that significant contributions to An occur
only for w = w__, The optimum damping effect of the plate on oscill-
lations driven™Bt the beam hence may be realized if one deslgns the
beam-plate system so that its resonances coincide with those of the

plate.* For such an optimized system W, = O and
F / o
e = af (MB + L —m— 5) (D.12)
NlRes fm(O)

For many (rectangular) systems one may, at least in theory, design
the plate so that 1t has a resonance wherever the beam has a reso-
nance., For a simply supported system with a centrally located beam

one finds that W, = O if

- (g %)2 NyE (0.13)

In order for a plate resonance to correspcnd tc each beam resonance
the foregoing equation must be satisfied for each value of n, n =
1,2,3,***. One thus needs merely to select some design value o for
the ratio m/n, then choose the beam and plate dimensions according
to Eq, (D.13). (If Eq. (D.13) is to hold for all n, o must be an
integer. )

*Heckl (ref. 8) obtained this conclusion by considering the plate
as an array of rods and demonstrated its validity experimentally.
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3. Excitation on Plate

In the presence of an externally applied pressure r(x,y)eimt
acting on the plate, one may write the modal loading P of Eq. (D.2)
as

O)Q1
Prn = R *'—"TET_;l (D.14)

m

where the first term denctes coefficlents of r{x,y) and the second
denotes the contribution of the beam-plate interaction force Q(y) =
& Qng (v). From Eq. (D.5) with F(y) = O one may establish a rela-

tion between Qn and the modal beam deflection ? the latter also
obeys

): wn Tm(0) (D.15)

in view of the definition of modal deflection W, of Eq. (D.2).
Combinatlion of these results with Eq. {D.3) then permits one to
arrive at the following relation between modal pressure R and
modal deflection ]‘d

. £_(0)
$ (1+15)w - 0 + I, [(1+1B)a e ] :i: _sn s(
H¥mn
(D 16)
2
I e fn(0)
m=Iy @

m

Equation (D,16) represents an infinite set of simultaneous
equations. Solutlon 1s difficult since the equations are coupled,
as evident by the appearance of all W terms on the right-hand side.
Fortunately, however, one need not attempt a solution to discuss
resonant behavior of the system.

At resonance of the m,n mode the modal amplitude wmn may be
expected to exceed all others considerably. System resonances
may be expected to occur for Re{h /M } = 0, or at frequencies

mn’/ T mn
an given by
wﬁn + Iy wi
an = 1+ Jm (D.17)
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The resonant modal displacement then obeys

R
uﬁn = Bwin + B mﬁ , (D.18)
mn
Res

The first term represents the plate contribution, the second that of
the beam; J_may be seen to descrilibe essentially the couplling of the
n-mode of tfe beam to the m, n-mode of the plate,

4, Conclusions

Beam resonant responses may be reduced by damping the attached
plates, Optimum effective beam damping 1is obtained when the plate
resonances are made to coincide with the beam resonances. For some
configurations this matching may be accomplished for all beam reso-
nances by sultable adjustment of the beam and plate geometries,

On the other hand, beam dampling has generally less effect on
the resonant responses of plates, Only a stiff, massive, and highly
damped beam can have much influence on the resonant responses of a
plate. But even such beams have little effect on these modes for
which the beam is located near a nodal line of the plate, or for
which plate flexure perpendicular to the beam predominates,

E, Damping of Aircraft Structural Joints

As dlscussed in the first section of this report, the damping
at Jjeints may be important in controlling the vibrations of a struc-
ture., Increases in the damping at Joints might be obtainable with
relatively minor structural modificatlons, which might thus provide
a simple and economical means for reducing vibratory response of the
structure, This section summarizes the results of an exploratory
study aimed at gaining some understanding of the mechanisms responsi-~
ble for the damping in riveted and similar joints; such understanding
18 clearly necessary for ratioconal optimization of this damping.

Some siudies of similar prcblems have pointed toward the impor-
tance of Coulomb or dry frictlion damping in some structural joints.
For example Klumpp and Goodman (ref, 30) developed analyses for
press-fit joints, and Pian (ref. 31) investigated bullt-up beams,
These studies showed good agreement between experimental measurements
and theoretical predictions based on Coulomb damping; strong depen-
dences of damping on amplitude (i.e., nonlinearitiess were found,
Somewhat different results were reported by Mead (ref. 32). In ex-
periments performed on meore nearly practical riveted Jointa he
observed no amplitude dependence of damping, cxcept at relatively
high amplitudes (which are of lesser interest here, since one
desires to avold severe vibrations in the first place).
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As Mead has pointed cut, the damping of riveted jointe might be
affected by many factors, includling:

1. Amplitude and mode shape of the vibration,

2. Normal pressure between Joined structures and its distribution
about rivets,

3. Shear stiffness of rivet in relation to local stiffness of
Joined structures, End fixlty of rivets assoclated with rivet
head geometry, radial pressure between rivet and hole; 1.e.,
assembly methods, might make significant differences.

4., Surface conditions at the interface, including roughness, presence
of lubricants, dust, local oxidation, wear (fretting).

In order to assess the importance and trends assoclated with some
of these parameters, a number of damping measurements were undeirtaken
using essentially the experimental setup described by Kerwin (refs.

33, 34)., The measurements consisted of driving a test bar sinusoidally,
removing the excitation, and observing the decay of the vibration, From
an oscllloscope display of the logarithm of amplitude versus time the
linearity of the decay could be assessed directly, and the loss factor
could be obtalned from the slope of the decay curve by means of a simple
calculation (ref. 34).

1. Experimental Results

A preiliminary experimert was performed on two 1/8" thick 24ST
aluminum plates, 2" wide and 15.5" long, Jjoined by 8 bolts {arranged
4" apart in two parallel rows, with 1" between rows). The decay
curves were observed to be straight, 1.e., damping was found to be
linear, over the entire range of amplitudes {0.02 to 50 g) of the
experiment, Similar linearity was also observed in virtually all of
the subsequently reported experiments, but in most of these no sttempt
was made to obtain a wide range of amplitudes,

A series of damping measurements were carried ocut on test pleces
cut from the interior of the forward structure of an F-105 alr¢raft,
These test samples, whoge cross-sactions are sketched in Fig. 15, con-
sisted of 27 1nch long beams with sections of skin attached by rivets
or spot welds. Test results for these samples appear in Fig, 15, to-
gether with results pertaining to the riveted sample piece after the
rivets had been drilled out and replaced by bolts and nuts, From
these results 1t appears plausible that the different Joining methods
considered result in essentially the same damping if the geometries
of the joints are roughiy similar., Since Fig, 15 pertains Lo methods
that produce tight Jjoints, i.e., that produce good connecticns in the
viecinity of the connectors, the foregoing statement might be extended
to include any tight joint. It thus appears that the damping of such
tight Jjolnts is not due to the connectors themselves, but perhaps due
to relative motion at the interface at some distance from the connec-
tors.
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In view of Fig. 15, one may also expeci to be able to obtain
results that have some meaning in relation to riveted joints from
experiments conducted on bolted joints, whlch are much easier to
adjust to desired conditions., Figure 16 marshals additional data
in support of the similarity of the damping characteristice of
riveted and bolted joints. (No torque wrench was available for
the small, 4-40, screws that were used. The "tight" condition
corresponds to the tightest that could be obtalned by hand with
a screwdriver; the "loose" was obtained by backing the screws orf
one quarter turn from the tight condition,)

Effects of rivet spacing may be seen in Flg, 17, which sum-
marizes the damping results obtained for the aforementioned riveted
aircraft jolnt sample before and atter drilling out some of the
rivets, Again, since damping 1s certainly not proportional to the
number of rivets, 1t cannot be due to the rivets per se or to small
areas surrounding the rivets. It may be more reasonable to asso-
clate damping with relative motion at interface areas located out-
slde of "clamped" areas near connectors. From the near correspon-
dence of the curve for 38 to that for 18 rivets one might estimate
that in the original sample the clamped areas associated with ad-
Jacent rivets probably overlapped.

That damping can not be associated merely with the structure
in the 1mmediate neighborhood of the connectors 1s also evident
from Fig. 18. The curves of this figure pertain to the spot-welded
sample structure, with different widths of the skin portions (cor-
responding to the 3" dimension of Fig., 15). Since the identical
connections are involved in all the cases shown here; they hence
cannot be responsible for the changes observed, and ¢ne is once
agaln led to ascribe the damping to those portions ¢f the struc-
ture which are not near the spot welds,

Figures 19 and 20 1llustrate the effects of Interface lubri-
cation, The addition of lubricant was found to result in increased
damping, with less viscous lubricants producing higher damping.¥*
Comparison of these two figures also lndlcates that reduction of
interface pressure (locsening of the screws) results in increased
damping for all of the interface condltions tested, Pressure reduc-
tion and improved lubrication thus produce similar results, probably

*Tt should be noted that some lubricant was found in the Jjolnt as
cut from the aircraft; the corresponding damping curve 1s labeled
"original condition”, Chemical degreasing resulted in reduced
damping, and subsegquent chomical removal of the zinc chromate
coating {curve labeled cleaned to metal) lowered the damping even
more,
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since both serve to reduce interface friction. Reduced friction
results in increased relative motion, whienh evidently more than
compensates for the effect of the reduced frictlon as far as energy
dissipation 1s concerned. (Ncte that the cycllic energy dissipated
in a classical linear dashpot 1s proportional to the square of the
amplitude, but only fo the firat power of the viscous damping co=-
efficient.)

Figure 21 shows the results that some simple modificatlons had
on the damping of the riveted F-105 sample structure, With the toe
of the original equilateral L-shaped cross-section bent down &
general increase in damping was observed, which may at least in part
be attributed to the extremely good contact fostered by such a cross-
section at the heel and toe of the L. However, a further genersl
increase in damping was obtained (except below 630 cpe) when the toe
of the L was cut off altogether, This increase might be due to im-
proved contact in the area that previously was between the heel and
toe; such improvement would be most noticeable at the higher fre-
quencies, where the motion 1s less restricted by the "rivets". The
peak observed at about 500 cps with the bent-down toe is probably
due to a mode shape for which a considerable amount of relative
motlon occurs at the toe, ,

Figures 22 and 23 summarize results of experiments aimed at
evaluating the effects of beam-and-skin contact area and of beam
stiffness separately. The measurements indicateiin these figures
were performed on speclally designed aluminum channel beams; those
of Fig. 22 have nearly the same flexural rigidity but differ con-
sliderably in contact area, whereas those of Fig, 23 have equal con-
tact areas but different atiffnesses,.

Increased contact area was found to result in increased damping
and changes in beam stiffness were found to affect damping relatively
little in general, The picture 18 by no means clear, however, It is
difficult to say, for example, if the higher damping noted with in-
creased contact area 1s due to this area increase per se or to changes
in mode shape. The high peaks shown in Fig. 23 between 500 and 800 cps
also present somewhat of an anomaly. Calculations show that this fre-
quency range corresponds to that where one half wavelength of flexural
motion of the skin is equal to the width of the skin attached to the
test beams, so that these peaks might be due to bending of the com-
posite about the rivet line (in contrast to the rest of the curve
which probably is primarily associated with bending of the rivet line).

A final series of tests were performed to determine the effects of
adnesives. The results of thesge tests, as shown in Fig. 24, indicate
that a dlsslpative adhesive likc MMM 466 can result in a considerable
damping increase over a wide frequency range, whereas a relatively
rigid loss-less adhesive (epoxy) not only adds little damping but even
reduces the damping of riveted joints under some circumstances.
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2., Conclusions

The studies outlined here, although by no means conclusive or
as comprshensive as one would like, permit one to arrive at least
at some tentative conclusicns.

These are:

1. The damping of aircraft joints is essentlally linear, except
perhaps at high amplitudes,

2. The damping of tight Joints seems not to be primarlly associated
with the connectors or the structure in the immedlate vicinity
of the connectors.

a, Different connectors (spot weld, rivets, bolts) produce
similar damplng characteristics.

b, Studies on bolted joints are capable of ylelding resuits
that have some meaning in relation to riveted joints,

3. Looser joints produce higher loss factors; reduced interface
pressure (looser or fewer rivets) or better lubrication results
in higher damping.

4, Increased beam-to-skin contact area produces increased damping.
5. Beam stiffness per se has relatively little effect on damping.

6. Rubbery dissipative adhesives introduced in the joint can
increase damping drasticaily, but rigid loess-less adhesives
can reduce damping.

Although the results presented here apply to a s*ructural Jjoint
configuration which appears to be falrly typlcal of current practice,
one should use extreme care in extrapolating these results to other
structures, Available data are still toc limited and understanding
of the pertinent phenomena 1s still to incomplete to permlt one to
draw valid conclusions about the damping of Jjoints of structures in
general.

It should also be noted that the various high peaks observed in
the presented damping curves are probably associated with modal shapes
that favor high energy diesipation In some manner, Since such shapes
are probably altered or suppressed if the Jjoint 1s part of a more
complicated structure, such peaks are mest llkely not observed In such
structures., In judging the damping eftectiveness of a Jjoint which 1s
to be incorporated in a more complicated structure from damping
measurements performed on the joint by itself one should therefore
probably ignore the peaks and concentrate on the overall level of
damping.
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F. HRelation of Plate Absorption Coefficlents
to Loss Factors of Boundary Structures

A considerable amount of Information is avallable concerning
the loss factors of beam-llke structures, whereas very little 1s
known about absorption coefficients assoclated with such structures.
This section therefore iz concerned with some preliminary analytical
steps toward obtaining interrelations between these two quantitiles.

1, GQGeneral Expressions

From the first section of this report it ies evident that the
absorption coefflcient v of a portlon of a plate boundary may be
defined by

Y = <Pdiss>/zpinc> s (F.1)

where Py,., denotes the (length-wise) average power flow per unit
length measured along the crest of a plate wave incident on the
boundary. Pgygg denotes the (length-wise) average power dilssipated
at the boundary, agaln referred to unit length measured along the
incident wave crest., The brackets < > indicate averages taken over
the angle of incidence 8, so that ¢ denotes the fraction of the
incident power that is dissipated,

If the wave field on the plate is reverberant (i.e., independent
of ) then (ref. 4
D k3 w

pDd o (F.2)

<Pyne® = Fipe = X

ine in
where XP denotes the dilsplacement amplitude of the plate flexural
wave, ki the wave number, o the circular frequency, and D the
flexurai rigidity of the plate,

The loss factor n of a structure is defined by (ref. 2)
N = Ugyon/270, (F.3)

where Uyygg denotes the total encrgy dissipated by the structure
per cycle and Uy the "energy of vibration” of the structure. (For
lightly damped structures U, 18 essentially equal to the time-wise
maximum of the total strain energy). In general n for a given
structure depends on amplitude, mcde shape, and frequency. No
essential difficulty results if the eaergy terms of Eq. (F.3) are
interpreied as length-wise gverage values rather than totals; hence
such averages will be assumecd henceferth., If n 18 now assumed to
be independent of length-wise position in the structure, then
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Psiss = Ydiss w/2r = U nw (F.4)
and from Eq. (F.1)
v = <nU >/ 13 D (F.5)

2. Boundary Structures with loss Factors
Independent of Deflection Shape

For beam-like structures whose loss factors do not depend on
the shapes Iinto which they are deformed during a vibration (e.g.,
homogeneous vligcoelastic bars or elastic bars with free visco-
elastic layers), the energy losses obtained when such structures
are attached to plates will be independent of the angle of -inci-
dence of plate waves, and <nU.> = n<U>.

The average straln energy in a beam of flexural stiffness EI
(where one might consider an 'effective beam" as including a por-
tion of the plate) may be found to be given by (ref. 4

<Up =5 <x2 (kp s1n a)% (F.6)

if the beam is assumed to deflect sinuscidally (in space) with the
proper spatial periodicity to conform to the incident plate waves
{refs, 4, 35). From Eq. (F.3) one may then obtain

v = n(EI kP/llD)'R ; R = <(XB/XP)2 Sin&9> . (F.7)

The parameter R depends on the effect of the beam on the
plate motion. When the added beam 1s so light and soft as to have
no appreclable effect on this motlon, then XBzXP and R=3/8, In
general, however, more detalled analyses are required. Some
results directly applicable to such analyses are available (ref.
35), but the multitude cof parameters complicate the analysis to
such an extent that it must be considered beyond the scope of the
present study.

3. Boundary Structures Attached with Viscoelastic Adhesive

In the case where structural beam 18 Jjoined to a plate by a
thin layer of viscoelastic glue, virtually all of the energy dis-
sipation occurs 1n the viscoelastic material. One may then utilize

the definition of the materizalig ghear lcss factor to write

Ug1gg = T B U8 ’ (r.8)
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where Ug denotes the time-wise maximum of the (length-wise averageﬁ
strain eénergy stored in the viscoelastic layer. From Egs. (F.1 - 4)
and the foregoing one may then obtaln the alternate expression

Y = BUS/Xp D kg (¥.9)

From an analysis similar to Kerwin's (ref. 33) ocne may show
that for a laminate consisting of a thin viscoelastlc layer between
two elastic structures (i.e., a beam and plate) where these are much
stiffer (in extension) than the viscoelastic layer,

3. 2
bG ( 2 sin-& {
= IH S X, ky) —_— F,10)
H P {y + sinae} )

if one alsc assumes that the wave in the laminate 1is sinusoidal in
space and has lts wavelength determined by plate waves striking the
beam with angle cf incidence 8. The newly introduced symbols have
the foliowing meanings:¥*

Gb 1 1
y=—5|7 + % (F.11)
Hkg(KB KP)
= width

thickness of viscoelastic

layer
real part of complex shear modulu

w @ m o
1l

distance from neutral axls of plate %o
that of added beam

Kz = EpAp = extensional stiffneas of unit
length of added beam

]
I

Kp = Epbph = extensional stiffness of unit
length of strip of plate affected by beam

EB,EP = Young's modulus of beam, plate, material
ag = beam cross-sectional area
h = plate thickness

bP = effective width of plate strip

*¥The parameter y 1s closely related to the generallized shear parameter
of Section III of Refl., 2.

ASD TDR 62-237 61



4, Damping Tapes

If X., 18 independent of the angle of incildence 6, then one may
readily alerage U, of Eq. (¥.10) over 6. Introducticn of this result
into Eq. (F.9) thén permits one to arrive at

% \2
= E{R‘E’) r v(y) (F.12a)
where
2
P .
b i)
3/2

U(y) = %{1 - 4y + (5+4y)(~1-}~§) ] (F.12b)

Dampling tapes represent the simplest boundary structures for
which these relations apply. They are studled here not only because
of their possible practical lmportance, but also because such a
study might provide an indication of the valldity of the foregoling
analysis.

Figure 25 shows absorption coefficients vy measured with 2-1lnch
wlde strips of damplng tape applied to an irregularly shaped alumlnum
plate, as well as curves obtained from calculations based on Egs.
(F.12). It is evident that theory and experiment agree quite well as
long as the tape width 1s less than the half wavelength of a plate
flexural wave, 1.e., for A4 inches. The derivation of Egs. (F.12)
assumes that all dampling is due to the length-wise deformatlon of the
viscoelastic layer. This assumption 1s no longer adequate for higher
frequencies where the tape width may extend over several plate wave-
lengths., At these freguencies cne would expect to obtaln additional
energy dissipation due tio width-wise shear deformations of the visco-
elastic layer, and Eqs. (F.12) underestimate the absorption coeffi-
¢ient., This is alsu evident in the flgure,

The experimental work summarized in Fig. 25 was done by methods
discussed in Section I and reference 34, Commercial (Scotcn Brand)
damping tapes were used, The thicknesses of the adhesive layers of
these tapes are a nominal 5 mils; 4288 tape has 8 mil aluminum foil
backing, 428C has a similar 12 mil thick backing. The adhesive prop-
erties used in the calculations were those published in reference 33.
For thne caliculavions Xp~Xp was assumed, since the tape is much lighter
and softer than the plate and may be supposed to affect the plate
motion only slightly.
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SECTION ITII

SUMMARY AND DISCUSSION

It has been shown that the responses of complex structures
are strongly influenced by energy absorption at joints between
substructures (measured in terms of absorption coefficients) and
by the amount of coupling hretween an exciting sound fileld and
the structure (described in terms of radiation resistance}, in
addition to the more conventional mass stiffness and damping
parameters of vibration analysis.

Absorption coefficlents were measurcd for a few structural
Joints, primarily to validate some of the theoretical work. De-
tailed studles of absorpiive ztructures and of some of the energy
dissipation mechanisms assoclated with them remain to be under-
taken, particularly with a view toward developing conflgurations
and design data leadling to improved absorptlon performance.

The damping due to riveted and similar Jjoints, which now
appears to be much more significant than had previously been sup-
posed, should merit considerable further investigation, Some of
the features of Joint damping brought to light by the exploratory
study reported here should be explored further; their exploitatlon
seems likely to lead to damping increases secured at little expense
and welght penalty.

An introductory analytical study attempted to establish some
relations between loss factors of boundary structures and the ab-
sorption coefficients realized when these structures are attached
to plates, Since much loss factor data are available, whereas
relatively little 1s known about absorption coefficients, continu-
ation of these studlies may lead to results of considerable utility.

Reductions in radiation resistance result in reduced vibra-
tions of structures exposed to acoustic fields, hence control of
these resistances constitutes an important means of vibration con-
trol. The first steps toward providing an understanding of the
mechanisms responsible for radiation resistance were described 1in
this report; extensions of these steps are being studied (ref. 17),
and undoubtedly much additional investigation will be required
before generally useful prediction and design procedures applicable
to complex structures are developed. The ability of special beams
(designed per Reference 19) to reduce radiation resistance has been
?emonstrated. however only by means of a laboratory experiment.

A am Fixmtheam ctundiang ara naodad 3 a Aot ot o LI P e, i
SApaadl Ly AL LUIIT L D LULUULITO O1C lITTUuCTu L uTuvoliliniuce i use vl O Wkl

structures is warranted and feasible in practice.
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Detalled analytical studles of vibration absorbers utilizing
viscoelastic spring elements showed these absorbers to be rela-
tively Impractical. The same concluslon was reached concerning
the utllity of ahsorbers using distributed asystems.

Viscoelastlic leaf springs were found to hold some promise
as vibration isolation systems required to perform well over very
wilde frequency ranges. Thelr main advantages over more conventional
springs lie 1n that they exhibit fewer transmissibllity peaks and
that they can be designed with frequency-variable damping. The
latter is important in reducing the magnitude of the transmlssibility
peaks without lncreasing significantly the transmissibility at low
frequencies., Additional study 1s needed to reduce these concepts
to practical hard-ware,

A study of the modal behavior of beam-plate systems showed
that when such systems are exclted at a beam the plates adjacent
to the bLeam may contribute significantly to reduction of the reso-
nant beam responses, High effective beam damping 1is cbtained when
the plates are highly damped and when they ars designed so that
they have resonances whenever the beam has resonances.

On the other hand, beam-plate systems excited by distributed
loading on the panels tend to derive only minor resonant response
reduction from damping of the beams, This iz so because the beams
tend to couple poorly to the plates. (Plates have many more reso-
nances than beams, hence one can not match beam resonances to each
of the panel resonances.) In general, therefore, one may hope to
obtain good contirrcl of beam-plate system resonant responses, no
matter how the system is driven, by damping only the plates and
designing these so that the resonances coincide with beam reso-
nances,
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APPENDIX T

MODAL DENSITIES

A, Plates

The natural frequencies W, of simply supported rectangular
plates are given by

/m Al 2 YB
LLLLY ﬂ\ + (Q A (1.1)
\7e ) “\z, TP

where m, n are positive integers, a, b are the edge lengths, and

c = 1/u) K cp is the wave veloclity.¥

If (m/a) and (n/b) were continuous variables, Eq. (I.1) would
represent a circle of radius (w/me) in the plane of these varilables,
as shown in Fig. 26. However, the natural frequencies correspond
only to integral values of m and n, hence to the "lattice points"
indicated in the figure. The number of natural frequencies that
fall below a specified valiue of w thus corresponds to the number
o§ lattice points that fall within the quarter circle of radius
w/Te.

Actual counting of these poin*s ﬁsuall is impractical, It 1is
more convenlent to assign an area( )( ) ) to each liattice point

(as shown in Fig. 26) and to determine how many of these lattice
point areas make up the area of the quarter circle. Of course, one
must make due allowance for the strips along the coordinate axes
thet are not assoclated with lattice points, One thus finds that
for a simply supported plate the number of modes whose frequencies

W, are less than w are given by

1 !- (1\\2 M
N(wmn«n) = ﬁr(’c?) - r\';,l) + "’] (1.2)

where P = 2(a+b) denotes the plate perimeter, The modal density,
obtained by differentiation of (I.2) with respect to w, is

nglw) = g oo - —E (1.3)

L, 21/wxcL

*K is the radius of gyration of the cross- section equal to h/+12,
where h represents the plate thickness. er, = g is the longitu~
dinal wave velocity in the plate material.
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For other than slimply supported boundaries the mode arrange-
ment 1s not quite 80 easlly computed, but approximatlons are
possible, Noting that the natural frequencles of a clamped-clamped

iV
bar of length b are approximately given by ¥%-= %-+~%E son=ml, 2,000
one may visuallze the lalttice correasponding to a plate clamped at

y=0,b to be shifted upward by an amount gg

lattice of Fig. 26. Simllarly, clamping
lattice to the right by an amount - .
areas within the quarter circle that are not associated with lattice
polnts, one may obtain the number of modes, as before., For a fully
clamped plate one finds

L L[ afe)? ®) 4oy
N(mmn<m) ~ i |Alg) - eRlT) YT

ng (w) ﬁL - L
8 T KCL ,(.N'CCL.

Plates with free edges may be treated similiarly., Since the
natural frequencies of a bar with free-free ends are exactly the
same as those of the same bar with clamped-clamped ends, the lattlce
for a free plate should be the same as that for a fully clamped one,
However, a free plate may also deferm in only one coordinate direc-
tion at & time, i.e., like a bar, sc that additional lattice points
occur where the lattice lines intersect the coordinate axes. For a
free plate, then,

.
1 il]

M (@yce) “ﬁ[“(‘a) ¥ “"I

. ! (1.5)

ng (@) =gme— -

with respect to the
at x=0,a would shift the

If one now accounts for the

(I.4)

R

Note that at high frequenciles one obtains the same mcdal
density for all boundary conditions, namely

g ~ Tmce; - (1.6)
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This corresponds to a frequency separation between modes of

Af’ué—@-:: 1 he

L
2T = Tm_ © m¢§

B, Zcam-Plate Systems

(1.7)

Consider an agglomeration of panels, f{rames, and stringers,
& is common tc aircraft censtruction, If the frames and stringers
were infinitely rigld they would remaln motlionless, and the modal
density would simply be the sum of the modal densities for all of
the panels, Actual reinforcing structures possess some flexlibility,
80 that adjacent panels may be expected to interact and the modes
of the total structure will be complicated combinations of motions
of all the sub-structures, but one may hope to obtain a rough es-
timate of the modal densitles of such complicated structures by
assuming that each panel adds its modes independently. The panels
(which may be assumed clamped at all frames and stringers) thus
contribute the following number cf modes below the frequency w;

v

v
P P
2 A P
0 i w i
NP((D) il z -;-é- - 57 -c—i- + VP ’ (1.8)
i=1 ~1i i=1
where V., denotes the number of the panels, For panels of the same
material and of uniform thickness, Eq, (I.8) may also be written as
2 2
, JAfe\" _ Blw
W (o) = Ew(c) r(c) +Vp (1.9)

whence

P A B

n (w) = - P
Smrep 2”1’““°L
where B is the total beam (or rivet-line) length, Note that each

beam 1s counted twice as perimeter length, once for each panel it
bounds, making P=2B,

(1.10)

[If one wishes to refine the estimate one must consider inter-
actlon of the various structural components. Among others, cne may
wish to add the modes due to motion of the gross structure, The
motion of & multiply veam-reinforced plate at the lower frequencies
is essentially that of an crthotropic plate (ref. 16), whose stiff-
ness 18 generally due primarily to the beams, If this equivalent
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plate i3 considered unsupported, one may invoke Eq. (I.5) but usge a
new equivalent phase velocity c,. If this orthotropic plate has an
area egual to the total structure area A, then it contirlbutes a num-
ber of modes glven by

2
NE(w) = '%r%— (i.11)
e

below w.

The number of modes below w in the beam-plate system will be
glven by

2
- wTAf1] 1\ _ wB
Ng = Tr(“cé' - ) m TP - (1.12)
& s

However, usually c_>>c, since the reinforcing beams in practical
structures generaliy are considerably stiffer than the panels,
Thus, inclusion of the eyuivalent plate modes gencrally modifiles
Eq. (I.9) only slightly, and generally adds little to the quality
of the estimate,.]

The frequency at which the first mode occurs may be estimated
by setting N(w) = 1 in Egq. (I.8). Solution of the resulting quad-
ratic equation results in a somewhat cumbersome expression, however,
One may instead wish to consider when one obtains one mode per panel
on the average, 1.e., when N = The corresponding frequency f

v »
of the "onset of modes" then 1s bbtained from Eq. (I.8) simply as®
aﬁeth
© H 3 A

For the simulated aircraft panel of Fig. 3 Eq., (I.10) results
in a modal density value (at high frequencies) of 0,272 modet//cps,
whereas experimentally a value of 0,28 was determined. Equation
(I.13; predlcts onset of modes (1.e., the occurrence of N=V_=15
modes) at 170 cps for the alrcraft panel, but experimentally one
finds N=15 at 100 cps - a discrepancy that may to some extent be
due to experimental difficulties, but most likely is due primariliy
to failure of the various assumptions to hold for the lower modes
and frequencles,
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APPENDIX IIX
MEASURED LOSS FACTORS OF AIRCRArT SUBSTRUCTURES

The loss factors of some plecez of g PF-1C5 forward structure
were measured during the course of some of the previously reported
studies, These results are presented here in Figures 27, and 28,
Inclusion of these data was deemed desirable here because such 1in-
formaticn seems to be lacking in the literature and because it
$1ght have some bearing on the course of future dampling investiga-

lons.

The data reported here were obtained by decay rate measure-~
ments, again using essentlally the techiaiques and lnstruments
discussed in reference 34,

The substructures to which these data pertaln included no
specific damping provisions. They were complicated structures,
however, made up of many panels with numerous reinforcing stringers
and bulkheads, and a multitude of rivets, spotwelids, and (relatively
rigid) inscrts of various sorts, The structures were painted foxr
the most part.

Rough measurement of surface area and total rivet line length
showed that on the basis of the relation near the top of p. 4 a
mean free path length of 6 inches or less would apply for flex-
ural waves con the surface panels of these structures. For these
1/16" thick aluminum panels 2 6" wavelength corresponds tc¢ about
600 cps, so that the absorption coefficient concept might reason-
ably be applied tc these structures for somewhat higher frequencles,
Unfortunately, detalled pertinent rivet line absorption coefficlent
data was lacking, so that further validation of the concept could
notdbe accomplished. This vallidation must be deferred to a later
study.
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